The biological consequences of social inequalities

Dr. PD Silvia STRINGHINI

Research Director Geneva University Hospital/ Geneva University

Educational inequalities in mortality

Education and cumulative mortality in Europe (EPIC, 371,295 participants, 9 countries)

Source: Gallo V. et al, PLoS ONE, 2012.

Educational inequalities in cardiovascular risk factors

Stringhini et al. PLOS ONE 2012 (COLAUS Study – lausanne)

Impact of social factors on premature mortality

Risque attribuable dans la population à des facteurs de risque sélectionnées (1.7 million de participants en 7 pays)

Stringhini S et al. The Lancet, 2017.

Social factors and trajectories of physical functioning

Stringhini S et al., BMJ 2018

Causal explanations for social inequalities in health

The lifecourse perspective

Models of lifecourse perspective

Latency model:

 Exposure to adverse SES in critical/sensitive periods alters biological parameters permanently (fetal programming; traumatic events during first year etc.)

Cumulation model:

Cumulative effect of exposure to low SES (and its associated factors) across the lifecourse

Pathway model:

Low SES in early life influence social mobility pathways and behaviours

Embodiement

"we literally incorporate, biologically, the material and social world in which we live, from in utero to death; a corollary is that no aspect of our biology can be understood absent knowledge of history and individual and societal ways of living."

Nancy Krieger JECH 2001

SES and biomarkers

Hypothalamic-pituitary-adrenal axis	Cortisol - Saliva, urine
	Dehydroepiandrosterone sulfate - Blood
Sympathetic neuro-hormonal system	Norepinephrine/Epinephrine - Urine
	Alpha-amylase - Saliva
Parasympathetic neuro-hormonal system	Heart rate variability - Pulse rate recording
Inflammatory/Immune system	C-reactive protein- Blood
	Erythrocyte sedimentation rate- Blood
	Interleukins- Blood
	Lymphocyte number and function- Blood
	Circulating serum albumin - Blood, saliva
Cardiovascular	Diastolic/systolic blood pressure
	Resting heart rate
Glucose metabolism	Fasting glucose- Blood
	Glycosylated hemoglobin- Blood
	Fasting insulin- Blood
Lipid metabolism	Cholesterol and lipoprotein fractions - Blood
	BMI, waist to hip ratio
	Total body fat - DXA scan
Hematological	Serum hemoglobin- Blood
_	Clotting factors and clotting time - Blood
Renal	Creatinine - Serum or 24h urine
	Urine albumin leakage - Urine
н <i>с</i>	Cystatin C - Serum or dried blood spot
Hepatic	Circulating serum albumin - Blood, saliva
Reproductive	Serum testosterone/estradioi- Blood
Dulmenen	Follicie-stimulating normone - Blood
Pulmonary	Arterial oxygen saturation - Pulse oximeter
Para	Peak expiratory flow - Spirometer
Bone	Bone density - DAA scan
Mussla	Skalatal musele mase DVA seen body impedence
ININSCIE	Grin strongth Dynamometer
B	Grip Strength - Dynamometer
DNA	Epigenetic markers

Source: Wolfe B, Evans W, Seeman T. The biological consequences of health inequalities (2012).

SES and HPA-axis dysregulation

SES and immune system biomarkers

Lifecourse SES and CRP and IL-6 concentation

Whitehall II Study

Source: Stringhini S et al. PLoS Medicine (2013).

SES and neural structure

60 typically developing, native English speaking children (US)

Stressful events in early life generally related to lower hippocampal and higher amygdala volume

Source: Noble et al. Developmental Science (2012).

Preterm birth and telomere lenght

The horizontal bars represent the mean values.

Source: Smeets et al. PLOS ONE 2014.

Social factors and brain development

US NIH MRI Study of Normal Brain Development, N=55 healthy children

Social factors and gut microbiome

Source: Bowyer et al. Microorganisms 2019.

SES and gene regulation

Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling

Socia varia

SANG

Published by © The Autho

Asr

ANG

BEA

Social Determinants

\mathbf{n}	\sim
IJ	
	-

Nada Marc

¹Sackle Pharm Univer Genetic Vancou Biostat

Life-course socioeconomic status and DNA methylation of genes regulating inflammation

Silvia Stringhini,^{1*†} Silvia Polidoro,^{2†} Carlotta Sacerdote,² Rachel S Kelly,^{3,4} Karin van Veldhoven,^{2,3} Claudia Agnoli,⁵ Sara Grioni,⁵ Rosario Tumino,⁶ Maria Concetta Giurdanella,⁶ Salvatore Panico,⁷ Amalia Mattiello,⁷ Domenico Palli,⁸ Giovanna Masala,⁸ Valentina Gallo,^{9,10} Raphaële Castagné,³ Fred Paccaud,¹ Gianluca Campanella,¹⁰ Marc Chadeau-Hyam³ and Paolo Vineis^{2,3}

¹Institute of Social and Preventive Medicine, University Hospital Centre, Lausanne, Switzerland,

International Journal of Epidemiology, 2015, 1320-1330

Advance Access Publication Date: 17 April 2015

doi: 10.1093/iie/dvv060

Original article

:151–160 je/dyr215

ty,3

SES and gene regulation

SES and inflammation

SES across the lifecurse and CRP among 23'000 participants in 6 cohorts

Source: Berger et al. Nat Comm 2019

Dominance rank and proinflammatory genes expression (macaques)

Source: Tung et al. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6490-5.

Socioeconomic status and DNA methylation

- Population: prospective cohort study of 857 individuals, sampled from the 47'749 participants of the EPIC-Italy study
- DNA extracted from white blood cells
- SES in early and adult life + lifecourse SES trajectories
- Genome wide methylation data available (450K)
- I7 genes (403 CpG sites) chosen on the basis of their involvement in SES-related inflammation in previous studies

Main results: household's occupation and DNA methylation

Source: Stringhini S, ...Vineis P. IJE 2015

SES trajectory e DNA methylation of proinflammatory genes

SES trajectory e DNA methylation of proinflammatory genes

Source: Bush ..., Kobor, Boyce et al. EPIGENOMICS 2018

Conserved transcriptional response to adversity (CTRA)

Neurobiological activation of leukocyte inflammatory genes and inhibition of innate antiviral genes in response to subjectively experienced physical or social threat

Source: Slavich & Cole. Clinical Psychological Science. 2013

Human Social Genomics

- Socio-environmental conditions associated with hundreds of «socially-sensitive» genes
 - ✓ urbanity
 - ✓ low socioeconomic status
 - ✓ social isolation
 - ✓ social threat
 - ✓ low or unstable social status
- Majority of studies examined leukocytes or diseases tissues

Concept of the reactive genome

- Genes are unfolding in specific social and historical milieu → change in paradigm where DNA not anymore the master of the cell but "sometimes comes to look like a servant, serving the proteins by being their memory" (Morange, 2001, Shapiro, 2002)
- Heritability of non-genetic features (ie. Transgenerational transmission of epigenetic traits)
- Nature and nurture no longer understood as dichotomous elements

Challenges

- Few studies with biomarkers, fewer with repeated measures of biomarkers, very very few with epigenetics and/or transcriptomics measures with good exposure data
- When data exist, sample is small and not always exposure data is good enough (ie: SES indicators poorly collected)
- Concerning SES-epigenetics:
 - ✓ Need to replicate results on larger studies
 - Test whether SES differences in methylation translate into differences in gene expression and circulating molecules
 - ✓ Test whether this can partly explain social differences in health
 - ✓ Explore link between SES and gene-regulation in other tissues
- At this stage, no clear policy implications of this research if not for identyfication of exposures and of critical time windows

Conclusions

- Social factors are integrated biologically from birth (or earlier)
 - ✓ Various pathways of integration
 - Various windows of integration \rightarrow of intervention?
 - Exposures from conception to old age
- Need better data and more interdisciplinary research
- Public health impact as well as phylosophycal/ethical implications not clear

Unil

UNIL | Université de Lausanne

SWISS NATIONAL SCIENCE FOUNDATION

Thank you for your attention!

Epigenetics – DNA methylation

Relton CL, Davey Smith G (2010) Epigenetic Epidemiology of Common Complex Disease: Prospects for Prediction, Prevention, and Treatment. PLoS Med 7(10): e1000356. doi:10.1371/journal.pmed.1000356