Missing Data in Longitudinal Studies: To Impute or not to Impute?

Robert Platt, PhD McGill University

Outline

- Missing data definitions
- Longitudinal data specific issues
- Methods
 - Simple methods
 - Multiple imputation
- Some broad recommendations

Missing Data

- Definition: If a measurement was intended to be taken and was not, it is missing
 - Observational study what does "intended" mean?
- Compare to: Intentional lack of data (eg some subjects measured every hour, others every two hours)
- Intentional/structural unbalance can be handled straightforwardly
- Missing must understand why...

Classifying Missing Data

- Completely Random (MCAR) if missingness independent of both observed and missing data
- Random (MAR) if missingness independent of missing data
- Informative if missingness depends on missing values
- Crucial distinction is between MAR and informative, because we observe the data to predict missingness.

MCAR-Missingness doesn't matter

- Complete cases are a random sample of the full dataset
 - A reduced dataset using only complete cases
 "looks like" the full dataset
 - Dropping cases with missing data gives unbiased estimates
 - Only issue is loss of power.

MAR– Can Model Missingness

- Missingness depends only on observed variables
 - Overall estimates biased in complete cases
 - BUT within strata, estimates are unbiased
- Analogous to stratified sampling
- Can fix these problems in analysis

NMAR - Big Problem

- Missingness depends on the missing data
- No statistical approach can give unbiased estimates
- Best bet try sensitivity analyses to determine extent of the missingness and what you can do about it

Key Result

- Crucial distinction is between MAR and informative, because the information about missingness and observed data can be separated.
- If data are MAR or MCAR, likelihood-based methods (eg mixed models) will work
- Methods like GEE for clustered data are not likelihood based.
 - Need extra care with missingness; weighted estimating equations

Problem

- MCAR/MAR/Informative?
 - How can you tell?
 - YOU CAN' T!
 - There is no test, and no guarantee whether it's one or the other...

Longitudinal data

Intermittent vs Dropout

- Dropout from time T onward all obs missing.
- Intermittent subjects miss individual values but return
- If intermittent mechanism is known, not really missing (see first slide)
- If unknown, must consider mechanism

Dropouts/Loss to follow up

- Problem dropouts usually not ignorable
- Eg dropout related to treatment sideeffect?
- If dropouts are sicker, then the remaining subjects appear healthier than the population.
- Are the reasons for dropout measured?

Solutions

- Last observation carried forward
 - Fill in with the last completed value
 - Typical in pharma industry
 - Conservative if positive time trend in the outcome
- Complete cases only
 - OK if MCAR rare
 - Biased if MAR or informative

Better solutions?

Missing indicator/category EG education:

- <12 yrs
- 12-16 yrs
- 16+ yrs
- Missing
- Problem what does the "missing" category mean?
 - It's an average of all the other categories. Meaningful?

Better Solutions

- Single Imputation
 - Estimate a predicted value for the missing value
 - Use this in the analysis.
 - Unbiased if MCAR or MAR
 - Problem uncertainty in that single prediction is not accounted for
 - Standard errors are too small

Best Solutions

- Multiple imputation
 - Impute several times
 - Use multiple values to estimate variability
 - Unbiased if MCAR/MAR
 - Variance estimates are valid.
- Inverse probability weighting
 - Inflate subjects by the inverse probability of being non-missing:
 - EG if 5 total subjects, 4 observed, reweight the 4 observed subjects by 5/4 (inverse probability of observed)
 - Unbiased if MCAR/MAR, variance estimates (via, e.g., bootstrap) valid

Multiple Imputation- Step 1

- A model for the missing data
 Multivariate normal model
 - assume that the variables follow an MVN.
 - Estimate using Markov Chain Monte Carlo
 - Works well, even with binary or categorical variables

Multiple Imputation- Step 1

- A model for the missing data
 - Conditional model (e.g., multiple imputation using chain
 - Propose a model for the distribution of each variable conditional on the others
 - Estimate missing values for first variable
 - Use those predictions to estimate second variable
 - Repeat 10-20 times

Multiple Imputation

- Pros and cons
 - MVNorm:
 - Easy, theoretically grounded.
 - Non-continuous variables?
 - MICE:
 - Good results in practice
 - Very flexible
 - No formal theoretical grounds
 - Perfect predictions

How to build MI model

- Large model is good
 - but not too large...
- Always include the outcome in the MI process!
 - Omitting outcome causes parameter estimates to be biased towards zero
- Which approach?
 - MICE typically recommended, but not universally.

Generating Imputations

- Repeat imputation process several (m) times
 - (note this is not the same as repeating the MICE steps 10-20 times)
- Each imputation generates a parameter estimate $\hat{\Theta}_j$ and variance estimate \hat{V}_j for j=1,...,m

Multiple Imputation – Step 2

- Compute within-imputation variance: $V = \frac{1}{m} \sum_{i=1}^{m} V_{i}$
- And between-imputation variance:

$$B = \frac{1}{m-1} \sum_{i=1}^{m} \left(\theta_i - \overline{\theta} \right)^2$$

• Final estimator is $\overline{\theta}$, variance V + (1+1/m)B

Inverse Weighting

- From survey sampling
- Idea –give higher weight to complete cases (proportional to the inverse of probability of being observed)
- Up-weight observed cases in rare strata
- Problem very high weights for very rare cases?

Inverse Probability Weighting

• Very simple example:

- 100 subjects
- 40 report smoking status: 10 smokers, 30 nonsmokers. Estimated P(smoking) = 0.25
- In 60, smoking status is missing.
- Assuming MAR, what's the best estimate of the number of smokers out of 100 total?
 - 25 (100*0.25)

IPW

- P(observed) = 40/100 = 0.4
- Each observed subject "counts" for 100/40 = 1/(0.4) =2.5 subjects in total
- Best guess for number of smokers: $-10^*(1/0.4) = 25$
- Weight by the inverse of P(observed)
- Bootstrap to get variance estimates (or analytic approaches)

MI vs IPW

- MI is better if we can model the missing values
 - e.g., if SBP is the missing variable and using other characteristics we can predict SBP
- IPW may be better if we can model the missingness process
 - e.g., if we know that smokers are much less likely to respond to questions about drinking (but unable to estimate alcohol consumption)

Is Imputation Necessary?

• Harrell (2001):

- If <5% of cases have missing data, then complete case analysis usually fine
- If >50% of cases have missing data, you should rethink the study!

- In between, imputation is usually best option

What can you do?

- Recognize missingness as a problem
- Don't default to complete cases!
- Remember MCAR vs MAR vs NMAR is untestable!
 - Could conduct sensitivity analyses
- If missingness is a significant problem, consult a statistician...

References

- Raghunathan TE. What do we do with missing data? Some options for analysis of incomplete data. Annu Rev Public Health 2004;25:99-117.
- Schafer JL, Graham JW. Missing data: our view of the state of the art. Psycholog Methods 2002;7:147-77
- Rubin DB. Inference and missing data. Biometrika 1976;63:581-92.
- 4. Greenland S. Finkle WD. A critical look at methods for handling missing covariates in epidemiologic regression analyses. Am J Epidemiol 1995;142:1255-64
- 5. White et al. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med (2010) pp. XX
- Moons et al. Using the outcome for imputation of missing predictor values was preferred. Journal of Clinical Epidemiology (2006) vol. 59 (10) pp. 1092-1101
- Lee KJ, Carlin JB. Multiple Imputation for Missing Data: Fully Conditional Specification Versus Multivariate Normal Imputation. Am J Epidemiol. 2010 Mar. 1;171(5):624–632.
- 8. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010;10:7.
- 9. White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. Stat Med. 2010 Sep. 13;:n/a–n/a.
- 10. Marshall A, Altman DG, Holder RL. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. BMC Med Res Methodol. 2010 Dec. 31;10(1):112.

1. 2.

3.